Basic Design

Desired max power output

2014/03/08

Conditions		
Required average SPL at the listening position SPLa: Distance between the speaker and listener d: Sensitivity of the speaker s: Impedance of the speaker R _I :	90 [dB] <== 3 [m] 104 [dB∕W] (@1m) 8 [ohm]	90dB represents the SPL threshold above which the ear can be damaged.
Reflection of the room boundaries are ignored.	- []	

Calculation

 $\begin{aligned} \mathsf{Pave} &= 10^{((\mathsf{SPLa}+20\log(d)-s)/10)} = 10^{((90+20\log(3)-106)/10)} = 0.358 \ [\mathsf{W}] \\ & \text{where Pave is average power output.} \\ \mathsf{Pmax} &= (\mathsf{sqrt}(2*\mathsf{Pave*R_L})*10^{(15/20)})^2/(2*\mathsf{R_L}) = (\mathsf{sqrt}(2*0.071*8)*10^{(15/20)})^2/(2*8) : 11.33 \ [\mathsf{W}] \\ & \text{where Pmax is the desired maximum power output.} \end{aligned}$

- -

Determination

Max power output is determined to be 20[W]. It is a nearly doubled value of Pmax so that distortion will be low enough at Pmax.

Power supply requirements

Conditions

Desired power output P _{O:}	20 [W]
Dropout voltage of LM3886 V_{od} :	4 [V]
Regulation of the power supply r:	15 [%]
High line condition h:	10 [%]
Voltage drop across diodes V_{BR} :	1 [V]

Calculation

$$\begin{split} V_{opeak} &= \text{sqrt}(2R_LP_O) = \ 17.89 \ [V_{peak}] \\ & \text{where } V_{opeak} \text{ is the peak supply voltage.} \\ I_{opeak} &= \text{sqrt}((2P_O)/R_L) = \ 2.236 \ [A_{peak}] \\ & \text{where } I_{opeak} \text{ is the peak supply current.} \\ V_{min} &= V_{opeak} + V_{od} = \ 21.89 \ [V] \\ & \text{where } V_{min} \text{ is the minimum supply voltage (the loaded supply voltage).} \\ V_{max} &= V_{min}(1+r/100)(1+h/100) = \ 27.69 \ [V] \\ & \text{where } V_{max} \text{ is the maximum supply voltage (no load and high line).} \end{split}$$

 $\begin{array}{lll} V_{cc} = V_{min}/(1-r/100) = & 25.75 \ [V] \\ V_{ee} = -V_{cc} = & -25.8 \ [V] \\ V_{sec} = (V_{cc} + V_{BR})/sqrt(2) = & 18.92 \ [V] \\ & \mbox{where } V_{sec} \ is the voltage of the secondary winding of the mains transformer. \\ I_{max} = sqrt(P_0/R_L) = & 1.581 \ [A] \\ I_{cc} = I_{max}/2 + 0.3 = & 1.091 \ [A] \\ I_{sec} = 1.8*I_{cc} = & 1.963 \ [A] \\ \end{array}$

Determination

Spec of the secondary windings: 20-0-20V, $2.0A \times ===>$ I mistakingly ordered RA200(200VA) that has 20-0-20V, $2.5A \times 2$ to Phoenix on 2014/03/05

From Denpa Kagaku Oct. 1980 p.135

Spec of the secondary windings: 20-0-20V, 1.0A x2 The mains transformer's capacity is 80 [VA]

 $\langle ==$ It's just equal to the double of the power output (20W+20W=40W)

Thermal design

Conditions		
Max junction temperature T _{Jmax} :	150 [deg-C]	
Ambient temperature T _{amb} :	40 [deg-C]	
Thermal resistance between the case and the heat sink Theta _{CS} :		0.5 [deg/W]
Thermal resistance between the Junction and the case Theta _{JC} :		1 [deg/W]

Calculation

$$\begin{split} V_{T} &= V_{cc} * 2 = 51.5 \ [V] \\ & \text{where } V_{T} \text{ is total supply voltage.} \\ P_{DMAX} &= V_{T}^{2} / (2 * 3.14^{2} R_{L}) = 16.8 \ [W] \\ & \text{where } P_{DMAX} \text{ is } ? \\ V_{opk} &= V_{T} / 3.14 = 16.39 \ [V] \\ P_{DAVE} &= (V_{opk} / R_{L}) [V_{T} / 3.14 - V_{opk} / 2] = 16.8 \ [W] \\ P_{DAVE} &= V_{T} V_{Opk} / 3.14 R_{L} - V_{opk}^{2} / (2R_{L}) = 16.8 \ [W] \\ Theta_{SA} &= [(T_{Jmax} - T_{Amb}) - P_{DMAX} (Theta_{Jc} + Theta_{CS})] / P_{DMAX} = 5.049 \ [deg/W] \end{split}$$

Determination

The thermal resistance of the heat sink is 5[deg/W]-6[deg/W]. Fischer Elektronik SK68-50-SA: 4.8[K/W], 50x46x33[mm] @364 at RS-online Or, the case itself is used as the heat sink. At least $150[cm^2]$ of surface area is required.

Negative feedback design

Conditions

Gain A _V :	13 or	22.28 [dB]	Bec
R _{f1} (feedback resistor)	100 [kohm]		Тур
The lower pole f _L :	20 [Hz]		
The upper pole f _H :	100 [kHz]		

Because LM3886 is stable when A_V is 10 or more. Typically 10k-100k. For low DC offsets at the output, 100k is the best.

Calculation

$V_{in} = sqrt(P_0R_L)/A_V = 0.973 [Vrms]$	===> matched with the spec
$R_i = R_{f1}/(A_V-1) = 8.333$ [kohm]	===> 8.2 [kohm]
$GBWP = A_V * f_H = 1.3 [MHz]$	It smaller than 2.0[MHz] for the LM3886 ===> Good!
$C_i >= 1/(2*3.14R_if_L) = 0.97 [uF]$	===> 1 [uF]